Yisha Chen 1,2,3Yun Ye 1,2,3Liangjin Huang 1,2,3,*Huan Yang 1,2,3[ ... ]Pu Zhou 1
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
3 Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
A low-numerical-aperture (NA) concept enables large-mode-area fiber with better single-mode operation ability, which is beneficial for transverse mode instability and nonlinear effects suppression. In this contribution, we reported a high-power fiber amplifier based on a piece of self-developed large-mode-area low-NA fiber with a core NA of 0.049 and a core/inner cladding diameter of 25/400 µm. The influence of the pump wavelength and fiber length on the power scaling potential of the fiber amplifier is systematically investigated. As a result, an output of 4.80 kW and a beam quality factor of ∼1.33 were finally obtained, which is the highest output power ever reported in a fiber amplifier exploiting the low-NA fiber. The results reveal that low-NA fibers have superiority in power scaling and beam quality maintenance at high power levels.
high power fiber lasers ytterbium-doped fiber low-numerical-aperture fiber mode instability 
Chinese Optics Letters
2024, 22(4): 041404
王鹏 1,2,3孟祥明 1,2,3吴函烁 1,2,3叶云 1,2,3[ ... ]陈金宝 1,2,3,*
作者单位
摘要
1 国防科技大学 前沿交叉学科学院,长沙 410073
2 国防科技大学南湖之光实验室,长沙 410073
3 国防科技大学 高能激光技术湖南省重点实验室,长沙 410073
半导体激光(LD)泵浦的高功率光纤激光器具有效率高、体积小、重量轻、稳定性好等优点,在工业加工等诸多领域都有着广泛的应用。为了提高泵浦光吸收率,传统光纤激光器常用915 nm和976 nm波段的LD作为激光的泵浦源。在该类LD泵浦的光纤激光器中,由于量子亏损和泵浦吸收系数相对较高,光纤激光器的热致模式不稳定(TMI)阈值相对较低。为了提高量子效率和潜在的TMI阈值,提出采用大于1010 nm波段的LD直接泵浦光纤激光器,产生高量子效率激光。搭建了振荡放大一体化的全光纤激光器,采用总泵浦功率为2.56 kW的1010 nm波段LD泵浦,首次获得输出功率2.05 kW、光束质量M2约1.7的激光。后续将通过进一步增大泵浦功率、优化光纤特性以实现更高功率、更优光束质量的光纤激光输出。
光纤激光器 量子亏损 振荡放大一体化 模式不稳定 fiber laser quantum defect oscillating-amplifying integrated laser transverse mode instability 
强激光与粒子束
2024, 36(3): 031001
王鹏 1,2,3奚小明 1,2,3孟祥明 1王小林 1,2,3,*[ ... ]陈金宝 1,2,3,**
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
3 国防科技大学高能激光技术湖南省重点实验室,湖南 长沙 410073
中国激光
2023, 50(21): 2116001
李凤昌 1王鹏 1,2,3王小林 1,2,3,*奚小明 1,2,3[ ... ]陈金宝 1,2,3,*
作者单位
摘要
1 国防科技大学 前沿交叉学科学院,长沙 410073
2 国防科技大学 南湖之光实验室,长沙 410073
3 国防科技大学 高能激光技术湖南省重点实验室,长沙 410073
当前,光纤激光器工作温度范围一般较窄,如果能够扩展激光器的工作温度范围,则有望在更多的环境和领域得到应用。近期,国防科技大学基于风冷结构的光纤耦合半导体激光器(LD)泵浦的全光纤振荡器方案,在−50~50 ℃超宽温范围内实现了1 kW量级的激光输出。通过优化系统设计,有望进一步提升宽温运行激光器的输出功率。
光纤激光器 光纤振荡器 宽温运行 风冷 fiber laser optical fiber oscillator wide temperature operation air cooling 
强激光与粒子束
2023, 35(9): 091013
肖虎 1,2李瑞显 1,2吴函烁 1,2黄良金 1,2[ ... ]陈金宝 1,2,***
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
级联泵浦方案具有泵浦光亮度高、量子亏损小、光纤热负荷低、模式不稳定阈值高等优势,是获得高功率光纤激光的主要技术方案。目前,万瓦级高光束质量光纤激光的实现在非线性效应抑制和模式控制等方面遇到困难。本文介绍了国防科技大学近年来在高光束质量级联泵浦光纤激光器方面的研究进展,并对功率和光束质量进一步提升的可行途径进行了分析。
高功率光纤激光器 级联泵浦 受激拉曼散射 光束质量 
光学学报
2023, 43(17): 1714009
刘佳琪 1曾令筏 1史尘 1,2,3吴函烁 1,2,3[ ... ]习锋杰 1,2,3,*
作者单位
摘要
1 国防科技大学 前沿交叉学科学院,长沙 410073
2 国防科技大学 南湖之光实验室,长沙 410073
3 国防科技大学 高能激光技术湖南省重点实验室,长沙 410073
双端输出光纤激光振荡器可以通过一个单谐振腔结构实现两路激光输出,能够减少高功率光纤激光系统的体积和成本,在工业领域有着很好的应用前景。基于双端泵浦谐振腔结构,采用稳波长981 nm光纤耦合半导体激光器(LD)泵浦纤芯/包层直径为30/400 µm的双包层掺镱光纤,首次实现了总功率大于8 kW的双端输出光纤激光振荡器。在总最高泵浦功率为10.951 kW时,A端输出功率为3769 W,B端输出功率为4400 W,总功率为8169 W,激光器光-光转换效率74.6%,A、B端激光光束质量M2因子分别约2.13和2.36。在最高输出功率时,两端输出激光中均未观察到动态模式不稳定效应(TMI)和受激拉曼散射(SRS),通过进一步增加泵浦功率,有望实现更高功率的激光输出。
光纤激光器 双端输出光纤激光振荡器 受激拉曼散射 模式不稳定效应 光纤盘绕 fiber laser bidirectional output fiber laser stimulated Raman scattering transverse mode instability fiber coiling 
强激光与粒子束
2023, 35(8): 081003
王小林 1,2王鹏 1,2吴函烁 1,2叶云 1[ ... ]陈金宝 1,2
作者单位
摘要
1 国防科技大学 前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学 南湖之光实验室,湖南 长沙 410073
LD泵浦掺镱光纤激光器具有低成本、高效率、高光束质量等优点,在工业、科研、**等领域有着广泛的应用。在大部分实际应用中,由功率和光束质量决定的亮度是影响光纤激光器实际作用性能的核心指标。受到非线性效应(尤其是受激拉曼散射)和模式不稳定效应的限制,当前高亮度掺镱光纤激光器输出功率提升遭遇了明显的技术瓶颈。为了抑制非线性效应和模式不稳定效应,在传统方法的基础上,提出了变纤芯直径光纤和优化泵浦波长等成体系的方法以提升光纤激光器的输出功率;为了有效提高对光纤激光器的设计研发能力,提出并开发了具有自主知识产权的光纤激光仿真软件SeeFiberLaser。首先,介绍了影响宽谱高功率掺镱光纤激光器亮度提升的主要限制因素,给出了各个限制因素的抑制方法;其次,利用自研光纤激光仿真软件SeeFiberLaser对提升光纤激光器功率的方法进行优化设计,并对工业常用的振荡器和高亮度光纤激光放大器进行仿真优化;然后,介绍课题组采用后向泵浦、变纤芯直径光纤和优化泵浦波长等方法提升激光功率,实现的6~10 kW高亮度功率光纤激光器;最后,对更高亮度光纤激光器的技术方案进行讨论和展望,提出了无源器件集成化、增益传能光纤一体化等思路,提出了基于变纤芯直径增益传能一体化光纤和集成化无源器件的新型高功率近单模光纤激光器技术方案。
光纤激光器 非线性效应 模式不稳定 激光亮度 仿真软件 fiber lasers nonlinear effects mode instability laser brightness simulation software 
红外与激光工程
2023, 52(6): 20230242
周朴 1蒋敏 2吴函烁 1,3邓宇 1[ ... ]冷进勇 1,3
作者单位
摘要
1 国防科技大学 前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学 试验训练基地,陕西 西安 710106
3 国防科技大学 南湖之光实验室,湖南 长沙 410073
光纤激光是20世纪以来国内的研究热点。国防科技大学在光纤激光方向的研究始于“十一五”期间,至今已有约15年的历程,取得了一系列同行认可的研究成果。学校光纤激光的研究主体依托于光学工程学科。光学工程学是学校的优势学科之一,近几轮学科评估中得到了很好的成绩,为光纤激光方面的研究提供了高水平的科研平台和人才队伍等;另一方面,光纤激光的发展也受益于学校学科门类比较齐全的优势和在学科交叉方面的有益探索与实践。文中从学科交叉视角,梳理学校光纤激光学科方向与电子、材料、控制、智能、纳米等学科方向交叉取得的若干重要突破,从科研范式演进、学科主体驱动、应用需求牵引和科教融合发展等四个方面分析交叉科学研究和交叉学科建设面临的机遇。
光学工程 学科交叉 光纤激光 相干合成 脉冲激光 optical engineering interdisciplinary fiber laser coherent synthesis pulsed laser 
红外与激光工程
2023, 52(6): 20230334
吴函烁 1,2,3蒋敏 1,4周朴 1,*
作者单位
摘要
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
3 脉冲功率技术国家重点实验室,湖南 长沙 410073
4 国防科技大学试验训练基地,陕西 西安 710106
近年来,人工智能科技的普及为激光领域的科技教育注入了新动力,进一步推动了激光行业的快速发展并拓宽了应用范围。从激光器件优化设计、激光器系统结构优化设计、光束智能控制及优化、激光特性的精确表征与预测、激光器应用效能优化等5个方面介绍了人工智能对激光领域的赋能效果,并对未来两个学科的双向赋能进行了初步分析和展望。
激光技术 人工智能 机器学习 智能控制 优化设计 
中国激光
2023, 50(11): 1101001
Author Affiliations
Abstract
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
In recent years, machine learning, especially various deep neural networks, as an emerging technique for data analysis and processing, has brought novel insights into the development of fiber lasers, in particular complex, dynamical, or disturbance-sensitive fiber laser systems. This paper highlights recent attractive research that adopted machine learning in the fiber laser field, including design and manipulation for on-demand laser output, prediction and control of nonlinear effects, reconstruction and evaluation of laser properties, as well as robust control for lasers and laser systems. We also comment on the challenges and potential future development.
PhotoniX
2022, 3(1): 16

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!